古风汉服美女图集

BM-K/KoSimCSE-roberta-multitask

2023-12-26 11:18 0 微浪网
导语: https://github.com/BM-K/Sen...,

BM-K/KoSimCSE-roberta-multitask

https://github.com/BM-K/Sentence-Embedding-is-all-you-need


Korean-Sentence-Embedding

Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides environments where individuals can train models.


Quick tour

import torch<br /> from transformers import AutoModel, AutoTokenizer<br /> def cal_score(a, b):<br /> if len(a.shape) == 1: a = a.unsqueeze(0)<br /> if len(b.shape) == 1: b = b.unsqueeze(0)<br /> a_norm = a / a.norm(dim=1)[:, None]<br /> b_norm = b / b.norm(dim=1)[:, None]<br /> return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100<br /> model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta-multitask')<br /> AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta-multitask')<br /> sentences = ['치타가 들판을 가로 질러 먹이를 쫓는다.',<br /> '치타 한 마리가 먹이 뒤에서 달리고 있다.',<br /> '원숭이 한 마리가 드럼을 연주한다.']<br /> inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")<br /> embeddings, _ = model(**inputs, return_dict=False)<br /> score01 = cal_score(embeddings[0][0], embeddings[1][0])<br /> score02 = cal_score(embeddings[0][0], embeddings[2][0])<br />


Performance

  • Semantic Textual Similarity test set results
Model AVG Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
KoSBERTSKT 77.40 78.81 78.47 77.68 77.78 77.71 77.83 75.75 75.22
KoSBERT 80.39 82.13 82.25 80.67 80.75 80.69 80.78 77.96 77.90
KoSRoBERTa 81.64 81.20 82.20 81.79 82.34 81.59 82.20 80.62 81.25
KoSentenceBART 77.14 79.71 78.74 78.42 78.02 78.40 78.00 74.24 72.15
KoSentenceT5 77.83 80.87 79.74 80.24 79.36 80.19 79.27 72.81 70.17
KoSimCSE-BERTSKT 81.32 82.12 82.56 81.84 81.63 81.99 81.74 79.55 79.19
KoSimCSE-BERT 83.37 83.22 83.58 83.24 83.60 83.15 83.54 83.13 83.49
KoSimCSE-RoBERTa 83.65 83.60 83.77 83.54 83.76 83.55 83.77 83.55 83.64
KoSimCSE-BERT-multitask 85.71 85.29 86.02 85.63 86.01 85.57 85.97 85.26 85.93
KoSimCSE-RoBERTa-multitask 85.77 85.08 86.12 85.84 86.12 85.83 86.12 85.03 85.99


收录说明:
1、本网页并非 BM-K/KoSimCSE-roberta-multitask 官网网址页面,此页面内容编录于互联网,只作展示之用;2、如果有与 BM-K/KoSimCSE-roberta-multitask 相关业务事宜,请访问其网站并获取联系方式;3、本站与 BM-K/KoSimCSE-roberta-multitask 无任何关系,对于 BM-K/KoSimCSE-roberta-multitask 网站中的信息,请用户谨慎辨识其真伪。4、本站收录 BM-K/KoSimCSE-roberta-multitask 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
1、本文来自 AIGC网址导航 投稿的内容 BM-K/KoSimCSE-roberta-multitask ,所有言论和图片纯属作者个人意见,版权归原作者所有;不代表 本站 立场;
2、本站所有文章、图片、资源等如果未标明原创,均为收集自互联网公开资源;分享的图片、资源、视频等,出镜模特均为成年女性正常写真内容,版权归原作者所有,仅作为个人学习、研究以及欣赏!如有涉及下载请24小时内删除;
3、如果您发现本站上有侵犯您的权益的作品,请与我们取得联系,我们会及时修改、删除并致以最深的歉意。邮箱: i-hu#(#换@)foxmail.com

2023-12-26

2023-12-26

古风汉服美女图集
扫一扫二维码分享