古风汉服美女图集

mio/tokiwa_midori

2023-12-26 16:14 0 微浪网
导语: ESPnet2 TTS model mio/...,

mio/tokiwa_midori


ESPnet2 TTS model


mio/tokiwa_midori

This model was trained by mio using amadeus recipe in espnet.


Demo: How to use in ESPnet2

Follow the ESPnet installation instructions
if you haven’t done that already.
cd espnet<br /> git checkout 0232f540a98ece921477b961db8ae019211da9af<br /> pip install -e .<br /> cd egs2/amadeus/tts1<br /> ./run.sh --skip_data_prep false --skip_train true --download_model mio/tokiwa_midori<br />


TTS config

expand

config: conf/tuning/finetune_vits.yaml<br /> print_config: false<br /> log_level: INFO<br /> dry_run: false<br /> iterator_type: sequence<br /> output_dir: exp/tts_midori_vits_finetune_from_jsut_32_sentence<br /> ngpu: 1<br /> seed: 777<br /> num_workers: 4<br /> num_att_plot: 0<br /> dist_backend: nccl<br /> dist_init_method: env://<br /> dist_world_size: null<br /> dist_rank: null<br /> local_rank: 0<br /> dist_master_addr: null<br /> dist_master_port: null<br /> dist_launcher: null<br /> multiprocessing_distributed: false<br /> unused_parameters: true<br /> sharded_ddp: false<br /> cudnn_enabled: true<br /> cudnn_benchmark: false<br /> cudnn_deterministic: false<br /> collect_stats: false<br /> write_collected_feats: false<br /> max_epoch: 100<br /> patience: null<br /> val_scheduler_criterion:<br /> - valid<br /> - loss<br /> early_stopping_criterion:<br /> - valid<br /> - loss<br /> - min<br /> best_model_criterion:<br /> - - train<br /> - total_count<br /> - max<br /> keep_nbest_models: 10<br /> nbest_averaging_interval: 0<br /> grad_clip: -1<br /> grad_clip_type: 2.0<br /> grad_noise: false<br /> accum_grad: 1<br /> no_forward_run: false<br /> resume: true<br /> train_dtype: float32<br /> use_amp: false<br /> log_interval: 50<br /> use_matplotlib: true<br /> use_tensorboard: false<br /> create_graph_in_tensorboard: false<br /> use_wandb: true<br /> wandb_project: midori<br /> wandb_id: null<br /> wandb_entity: null<br /> wandb_name: vits_finetune_midori_from_jsut<br /> wandb_model_log_interval: -1<br /> detect_anomaly: false<br /> pretrain_path: null<br /> init_param:<br /> - downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts<br /> ignore_init_mismatch: false<br /> freeze_param: []<br /> num_iters_per_epoch: 1000<br /> batch_size: 20<br /> valid_batch_size: null<br /> batch_bins: 5000000<br /> valid_batch_bins: null<br /> train_shape_file:<br /> - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn<br /> - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape<br /> valid_shape_file:<br /> - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn<br /> - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape<br /> batch_type: numel<br /> valid_batch_type: null<br /> fold_length:<br /> - 150<br /> - 204800<br /> sort_in_batch: descending<br /> sort_batch: descending<br /> multiple_iterator: false<br /> chunk_length: 500<br /> chunk_shift_ratio: 0.5<br /> num_cache_chunks: 1024<br /> train_data_path_and_name_and_type:<br /> - - dump/22k/raw/train/text<br /> - text<br /> - text<br /> - - dump/22k/raw/train/wav.scp<br /> - speech<br /> - sound<br /> valid_data_path_and_name_and_type:<br /> - - dump/22k/raw/dev/text<br /> - text<br /> - text<br /> - - dump/22k/raw/dev/wav.scp<br /> - speech<br /> - sound<br /> allow_variable_data_keys: false<br /> max_cache_size: 0.0<br /> max_cache_fd: 32<br /> valid_max_cache_size: null<br /> optim: adamw<br /> optim_conf:<br /> lr: 0.0001<br /> betas:<br /> - 0.8<br /> - 0.99<br /> eps: 1.0e-09<br /> weight_decay: 0.0<br /> scheduler: exponentiallr<br /> scheduler_conf:<br /> gamma: 0.999875<br /> optim2: adamw<br /> optim2_conf:<br /> lr: 0.0001<br /> betas:<br /> - 0.8<br /> - 0.99<br /> eps: 1.0e-09<br /> weight_decay: 0.0<br /> scheduler2: exponentiallr<br /> scheduler2_conf:<br /> gamma: 0.999875<br /> generator_first: false<br /> token_list:<br /> - <blank><br /> - <unk><br /> - '1'<br /> - '2'<br /> - '0'<br /> - '3'<br /> - '4'<br /> - '-1'<br /> - '5'<br /> - a<br /> - o<br /> - '-2'<br /> - i<br /> - '-3'<br /> - u<br /> - e<br /> - k<br /> - n<br /> - t<br /> - '6'<br /> - r<br /> - '-4'<br /> - s<br /> - N<br /> - m<br /> - pau<br /> - '7'<br /> - sh<br /> - d<br /> - g<br /> - w<br /> - '8'<br /> - U<br /> - '-5'<br /> - I<br /> - cl<br /> - h<br /> - y<br /> - b<br /> - '9'<br /> - j<br /> - ts<br /> - ch<br /> - '-6'<br /> - z<br /> - p<br /> - '-7'<br /> - f<br /> - ky<br /> - ry<br /> - '-8'<br /> - gy<br /> - '-9'<br /> - hy<br /> - ny<br /> - '-10'<br /> - by<br /> - my<br /> - '-11'<br /> - '-12'<br /> - '-13'<br /> - py<br /> - '-14'<br /> - '-15'<br /> - v<br /> - '10'<br /> - '-16'<br /> - '-17'<br /> - '11'<br /> - '-21'<br /> - '-20'<br /> - '12'<br /> - '-19'<br /> - '13'<br /> - '-18'<br /> - '14'<br /> - dy<br /> - '15'<br /> - ty<br /> - '-22'<br /> - '16'<br /> - '18'<br /> - '19'<br /> - '17'<br /> - <sos/eos><br /> odim: null<br /> model_conf: {}<br /> use_preprocessor: true<br /> token_type: phn<br /> bpemodel: null<br /> non_linguistic_symbols: null<br /> cleaner: jaconv<br /> g2p: pyopenjtalk_accent_with_pause<br /> feats_extract: linear_spectrogram<br /> feats_extract_conf:<br /> n_fft: 1024<br /> hop_length: 256<br /> win_length: null<br /> normalize: null<br /> normalize_conf: {}<br /> tts: vits<br /> tts_conf:<br /> generator_type: vits_generator<br /> generator_params:<br /> hidden_channels: 192<br /> spks: -1<br /> global_channels: -1<br /> segment_size: 32<br /> text_encoder_attention_heads: 2<br /> text_encoder_ffn_expand: 4<br /> text_encoder_blocks: 6<br /> text_encoder_positionwise_layer_type: conv1d<br /> text_encoder_positionwise_conv_kernel_size: 3<br /> text_encoder_positional_encoding_layer_type: rel_pos<br /> text_encoder_self_attention_layer_type: rel_selfattn<br /> text_encoder_activation_type: swish<br /> text_encoder_normalize_before: true<br /> text_encoder_dropout_rate: 0.1<br /> text_encoder_positional_dropout_rate: 0.0<br /> text_encoder_attention_dropout_rate: 0.1<br /> use_macaron_style_in_text_encoder: true<br /> use_conformer_conv_in_text_encoder: false<br /> text_encoder_conformer_kernel_size: -1<br /> decoder_kernel_size: 7<br /> decoder_channels: 512<br /> decoder_upsample_scales:<br /> - 8<br /> - 8<br /> - 2<br /> - 2<br /> decoder_upsample_kernel_sizes:<br /> - 16<br /> - 16<br /> - 4<br /> - 4<br /> decoder_resblock_kernel_sizes:<br /> - 3<br /> - 7<br /> - 11<br /> decoder_resblock_dilations:<br /> - - 1<br /> - 3<br /> - 5<br /> - - 1<br /> - 3<br /> - 5<br /> - - 1<br /> - 3<br /> - 5<br /> use_weight_norm_in_decoder: true<br /> posterior_encoder_kernel_size: 5<br /> posterior_encoder_layers: 16<br /> posterior_encoder_stacks: 1<br /> posterior_encoder_base_dilation: 1<br /> posterior_encoder_dropout_rate: 0.0<br /> use_weight_norm_in_posterior_encoder: true<br /> flow_flows: 4<br /> flow_kernel_size: 5<br /> flow_base_dilation: 1<br /> flow_layers: 4<br /> flow_dropout_rate: 0.0<br /> use_weight_norm_in_flow: true<br /> use_only_mean_in_flow: true<br /> stochastic_duration_predictor_kernel_size: 3<br /> stochastic_duration_predictor_dropout_rate: 0.5<br /> stochastic_duration_predictor_flows: 4<br /> stochastic_duration_predictor_dds_conv_layers: 3<br /> vocabs: 85<br /> aux_channels: 513<br /> discriminator_type: hifigan_multi_scale_multi_period_discriminator<br /> discriminator_params:<br /> scales: 1<br /> scale_downsample_pooling: AvgPool1d<br /> scale_downsample_pooling_params:<br /> kernel_size: 4<br /> stride: 2<br /> padding: 2<br /> scale_discriminator_params:<br /> in_channels: 1<br /> out_channels: 1<br /> kernel_sizes:<br /> - 15<br /> - 41<br /> - 5<br /> - 3<br /> channels: 128<br /> max_downsample_channels: 1024<br /> max_groups: 16<br /> bias: true<br /> downsample_scales:<br /> - 2<br /> - 2<br /> - 4<br /> - 4<br /> - 1<br /> nonlinear_activation: LeakyReLU<br /> nonlinear_activation_params:<br /> negative_slope: 0.1<br /> use_weight_norm: true<br /> use_spectral_norm: false<br /> follow_official_norm: false<br /> periods:<br /> - 2<br /> - 3<br /> - 5<br /> - 7<br /> - 11<br /> period_discriminator_params:<br /> in_channels: 1<br /> out_channels: 1<br /> kernel_sizes:<br /> - 5<br /> - 3<br /> channels: 32<br /> downsample_scales:<br /> - 3<br /> - 3<br /> - 3<br /> - 3<br /> - 1<br /> max_downsample_channels: 1024<br /> bias: true<br /> nonlinear_activation: LeakyReLU<br /> nonlinear_activation_params:<br /> negative_slope: 0.1<br /> use_weight_norm: true<br /> use_spectral_norm: false<br /> generator_adv_loss_params:<br /> average_by_discriminators: false<br /> loss_type: mse<br /> discriminator_adv_loss_params:<br /> average_by_discriminators: false<br /> loss_type: mse<br /> feat_match_loss_params:<br /> average_by_discriminators: false<br /> average_by_layers: false<br /> include_final_outputs: true<br /> mel_loss_params:<br /> fs: 22050<br /> n_fft: 1024<br /> hop_length: 256<br /> win_length: null<br /> window: hann<br /> n_mels: 80<br /> fmin: 0<br /> fmax: null<br /> log_base: null<br /> lambda_adv: 1.0<br /> lambda_mel: 45.0<br /> lambda_feat_match: 2.0<br /> lambda_dur: 1.0<br /> lambda_kl: 1.0<br /> sampling_rate: 22050<br /> cache_generator_outputs: true<br /> pitch_extract: null<br /> pitch_extract_conf: {}<br /> pitch_normalize: null<br /> pitch_normalize_conf: {}<br /> energy_extract: null<br /> energy_extract_conf: {}<br /> energy_normalize: null<br /> energy_normalize_conf: {}<br /> required:<br /> - output_dir<br /> - token_list<br /> version: '202207'<br /> distributed: false<br />


Citing ESPnet

@inproceedings{watanabe2018espnet,<br /> author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},<br /> title={{ESPnet}: End-to-End Speech Processing Toolkit},<br /> year={2018},<br /> booktitle={Proceedings of Interspeech},<br /> pages={2207--2211},<br /> doi={10.21437/Interspeech.2018-1456},<br /> url={http://dx.doi.org/10.21437/Interspeech.2018-1456}<br /> }<br /> @inproceedings{hayashi2020espnet,<br /> title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},<br /> author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},<br /> booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},<br /> pages={7654--7658},<br /> year={2020},<br /> organization={IEEE}<br /> }<br />

or arXiv:
@misc{watanabe2018espnet,<br /> title={ESPnet: End-to-End Speech Processing Toolkit},<br /> author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},<br /> year={2018},<br /> eprint={1804.00015},<br /> archivePrefix={arXiv},<br /> primaryClass={cs.CL}<br /> }<br />


收录说明:
1、本网页并非 mio/tokiwa_midori 官网网址页面,此页面内容编录于互联网,只作展示之用;2、如果有与 mio/tokiwa_midori 相关业务事宜,请访问其网站并获取联系方式;3、本站与 mio/tokiwa_midori 无任何关系,对于 mio/tokiwa_midori 网站中的信息,请用户谨慎辨识其真伪。4、本站收录 mio/tokiwa_midori 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航

声明:本文来自投稿,不代表微浪网立场,版权归原作者所有,欢迎分享本文,转载请保留出处!

2023-12-26

2023-12-26

古风汉服美女图集
扫一扫二维码分享