FinBERT
is a BERT model pre-trained on financial communication text. The purpose is to enhance financial NLP research and practice. It is trained on the following three financial communication corpus. The total corpora size is 4.9B tokens.
- Corporate Reports 10-K & 10-Q: 2.5B tokens
- Earnings Call Transcripts: 1.3B tokens
- Analyst Reports: 1.1B tokens
More technical details on FinBERT
: Click Link
This released finbert-tone
model is the FinBERT
model fine-tuned on 10,000 manually annotated (positive, negative, neutral) sentences from analyst reports. This model achieves superior performance on financial tone analysis task. If you are simply interested in using FinBERT
for financial tone analysis, give it a try.
If you use the model in your academic work, please cite the following paper:
Huang, Allen H., Hui Wang, and Yi Yang. “FinBERT: A Large Language Model for Extracting Information from Financial Text.” Contemporary Accounting Research (2022).
How to use
You can use this model with Transformers pipeline for sentiment analysis.
from transformers import BertTokenizer, BertForSequenceClassification<br /> from transformers import pipeline<br /> finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone',num_labels=3)<br /> tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone')<br /> nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer)<br /> sentences = ["there is a shortage of capital, and we need extra financing",<br /> "growth is strong and we have plenty of liquidity",<br /> "there are doubts about our finances",<br /> "profits are flat"]<br /> results = nlp(sentences)<br /> print(results) #LABEL_0: neutral; LABEL_1: positive; LABEL_2: negative<br />
收录说明:
1、本网页并非 yiyanghkust/finbert-tone 官网网址页面,此页面内容编录于互联网,只作展示之用;2、如果有与 yiyanghkust/finbert-tone 相关业务事宜,请访问其网站并获取联系方式;3、本站与 yiyanghkust/finbert-tone 无任何关系,对于 yiyanghkust/finbert-tone 网站中的信息,请用户谨慎辨识其真伪。4、本站收录 yiyanghkust/finbert-tone 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)
前往AI网址导航
2、本站所有文章、图片、资源等如果未标明原创,均为收集自互联网公开资源;分享的图片、资源、视频等,出镜模特均为成年女性正常写真内容,版权归原作者所有,仅作为个人学习、研究以及欣赏!如有涉及下载请24小时内删除;
3、如果您发现本站上有侵犯您的权益的作品,请与我们取得联系,我们会及时修改、删除并致以最深的歉意。邮箱: i-hu#(#换@)foxmail.com