古风汉服美女图集

prithivida/bert-for-patents-64d

2023-12-27 02:21 0 微浪网
导语: Motivation This model is ...,

prithivida/bert-for-patents-64d


Motivation

This model is based on anferico/bert-for-patents – a BERTLARGE model (See next section for details below). By default, the pre-trained model’s output embeddings with size 768 (base-models) or with size 1024 (large-models). However, when you store Millions of embeddings, this can require quite a lot of memory/storage. So have reduced the embedding dimension to 64 i.e 1/16th of 1024 using Principle Component Analysis (PCA) and it still gives a comparable performance. Yes! PCA gives better performance than NMF. Note: This process neither improves the runtime, nor the memory requirement for running the model. It only reduces the needed space to store embeddings, for example, for semantic search using vector databases.


BERT for Patents

BERT for Patents is a model trained by Google on 100M+ patents (not just US patents).
If you want to learn more about the model, check out the blog post, white paper and GitHub page containing the original TensorFlow checkpoint.



Projects using this model (or variants of it):

  • Patents4IPPC (carried out by Pi School and commissioned by the Joint Research Centre (JRC) of the European Commission)


收录说明:
1、本网页并非 prithivida/bert-for-patents-64d 官网网址页面,此页面内容编录于互联网,只作展示之用;2、如果有与 prithivida/bert-for-patents-64d 相关业务事宜,请访问其网站并获取联系方式;3、本站与 prithivida/bert-for-patents-64d 无任何关系,对于 prithivida/bert-for-patents-64d 网站中的信息,请用户谨慎辨识其真伪。4、本站收录 prithivida/bert-for-patents-64d 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
1、本文来自 AIGC网址导航 投稿的内容 prithivida/bert-for-patents-64d ,所有言论和图片纯属作者个人意见,版权归原作者所有;不代表 本站 立场;
2、本站所有文章、图片、资源等如果未标明原创,均为收集自互联网公开资源;分享的图片、资源、视频等,出镜模特均为成年女性正常写真内容,版权归原作者所有,仅作为个人学习、研究以及欣赏!如有涉及下载请24小时内删除;
3、如果您发现本站上有侵犯您的权益的作品,请与我们取得联系,我们会及时修改、删除并致以最深的歉意。邮箱: i-hu#(#换@)foxmail.com

2023-12-27

2023-12-27

古风汉服美女图集
扫一扫二维码分享