古风汉服美女图集

asapp/sew-tiny-100k

2023-12-27 09:24 0 微浪网
导语: SEW-tiny SEW by ASAPP Res...,

asapp/sew-tiny-100k


SEW-tiny

SEW by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc…
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .


Usage

See this blog for more information on how to fine-tune the model. Note that the class Wav2Vec2ForCTC has to be replaced by SEWForCTC.


收录说明:
1、本网页并非 asapp/sew-tiny-100k 官网网址页面,此页面内容编录于互联网,只作展示之用;2、如果有与 asapp/sew-tiny-100k 相关业务事宜,请访问其网站并获取联系方式;3、本站与 asapp/sew-tiny-100k 无任何关系,对于 asapp/sew-tiny-100k 网站中的信息,请用户谨慎辨识其真伪。4、本站收录 asapp/sew-tiny-100k 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
1、本文来自 AIGC网址导航 投稿的内容 asapp/sew-tiny-100k ,所有言论和图片纯属作者个人意见,版权归原作者所有;不代表 本站 立场;
2、本站所有文章、图片、资源等如果未标明原创,均为收集自互联网公开资源;分享的图片、资源、视频等,出镜模特均为成年女性正常写真内容,版权归原作者所有,仅作为个人学习、研究以及欣赏!如有涉及下载请24小时内删除;
3、如果您发现本站上有侵犯您的权益的作品,请与我们取得联系,我们会及时修改、删除并致以最深的歉意。邮箱: i-hu#(#换@)foxmail.com

2023-12-27

2023-12-27

古风汉服美女图集
扫一扫二维码分享