古风汉服美女图集

keras-io/imbalanced_classification

2023-12-27 22:06 0 微浪网
导语: Model Description Kera...,

keras-io/imbalanced_classification


Model Description


Keras Implementation of Imbalanced classification: credit card fraud detection

This repo contains the trained model of Imbalanced classification: credit card fraud detection.
The full credit goes to: fchollet


Intended uses & limitations

  • The trained model is used to detect of a specific transaction is fraudulent or not.


Training dataset

  • Credit Card Fraud Detection
  • Due to the high imbalance of the target feature (417 frauds or 0.18% of total 284,807 samples), training weight was applied to reduce the False Negatives to the lowest level as possible.


Training procedure


Training hyperparameter

The following hyperparameters were used during training:

  • optimizer: ‘Adam’
  • learning_rate: 0.01
  • loss: ‘binary_crossentropy’
  • epochs: 30
  • batch_size: 2048
  • beta_1: 0.9
  • beta_2: 0.999
  • epsilon: 1e-07
  • training_precision: float32


Training Metrics

Epochs Train Loss Train Fn Train Fp Train Tn Train Tp Train Precision Train Recall Validation Loss Validation Fn Validation Fp Validation Tn Validation Tp Validation Precision Validation Recall
1 0.0 14.0 6202.0 221227.0 403.0 0.061 0.966 0.043 9.0 622.0 56264.0 66.0 0.096 0.88
2 0.0 3.0 3514.0 223915.0 414.0 0.105 0.993 0.025 10.0 528.0 56358.0 65.0 0.11 0.867
3 0.0 2.0 2419.0 225010.0 415.0 0.146 0.995 0.014 11.0 283.0 56603.0 64.0 0.184 0.853
4 0.0 3.0 2482.0 224947.0 414.0 0.143 0.993 0.027 11.0 340.0 56546.0 64.0 0.158 0.853
5 0.0 2.0 2295.0 225134.0 415.0 0.153 0.995 0.034 11.0 245.0 56641.0 64.0 0.207 0.853
6 0.0 3.0 2239.0 225190.0 414.0 0.156 0.993 0.037 10.0 495.0 56391.0 65.0 0.116 0.867
7 0.0 2.0 3095.0 224334.0 415.0 0.118 0.995 0.011 11.0 194.0 56692.0 64.0 0.248 0.853
8 0.0 4.0 1844.0 225585.0 413.0 0.183 0.99 0.035 9.0 429.0 56457.0 66.0 0.133 0.88
9 0.0 1.0 2119.0 225310.0 416.0 0.164 0.998 0.012 11.0 167.0 56719.0 64.0 0.277 0.853
10 0.0 3.0 1539.0 225890.0 414.0 0.212 0.993 0.013 13.0 144.0 56742.0 62.0 0.301 0.827
11 0.0 6.0 3444.0 223985.0 411.0 0.107 0.986 0.039 11.0 394.0 56492.0 64.0 0.14 0.853
12 0.0 4.0 3818.0 223611.0 413.0 0.098 0.99 0.03 9.0 523.0 56363.0 66.0 0.112 0.88
13 0.0 7.0 4482.0 222947.0 410.0 0.084 0.983 0.059 6.0 1364.0 55522.0 69.0 0.048 0.92
14 0.0 2.0 3064.0 224365.0 415.0 0.119 0.995 0.033 9.0 699.0 56187.0 66.0 0.086 0.88
15 0.0 4.0 3563.0 223866.0 413.0 0.104 0.99 0.066 8.0 956.0 55930.0 67.0 0.065 0.893
16 0.0 4.0 2536.0 224893.0 413.0 0.14 0.99 0.016 9.0 339.0 56547.0 66.0 0.163 0.88
17 0.0 6.0 2594.0 224835.0 411.0 0.137 0.986 0.049 8.0 821.0 56065.0 67.0 0.075 0.893
18 0.0 1.0 1911.0 225518.0 416.0 0.179 0.998 0.013 8.0 215.0 56671.0 67.0 0.238 0.893
19 0.0 2.0 1457.0 225972.0 415.0 0.222 0.995 0.018 7.0 342.0 56544.0 68.0 0.166 0.907
20 0.0 0.0 1132.0 226297.0 417.0 0.269 1.0 0.011 10.0 172.0 56714.0 65.0 0.274 0.867
21 0.0 1.0 840.0 226589.0 416.0 0.331 0.998 0.008 11.0 100.0 56786.0 64.0 0.39 0.853
22 0.0 1.0 2124.0 225305.0 416.0 0.164 0.998 0.075 10.0 350.0 56536.0 65.0 0.157 0.867
23 0.0 2.0 1457.0 225972.0 415.0 0.222 0.995 0.03 11.0 242.0 56644.0 64.0 0.209 0.853
24 0.0 5.0 2761.0 224668.0 412.0 0.13 0.988 0.297 6.0 2741.0 54145.0 69.0 0.025 0.92
25 0.0 3.0 2484.0 224945.0 414.0 0.143 0.993 0.025 10.0 199.0 56687.0 65.0 0.246 0.867
26 0.0 4.0 4867.0 222562.0 413.0 0.078 0.99 0.021 18.0 33.0 56853.0 57.0 0.633 0.76
27 0.0 8.0 4230.0 223199.0 409.0 0.088 0.981 0.053 9.0 1541.0 55345.0 66.0 0.041 0.88
28 0.0 9.0 5305.0 222124.0 408.0 0.071 0.978 0.026 9.0 398.0 56488.0 66.0 0.142 0.88
29 0.0 5.0 4846.0 222583.0 412.0 0.078 0.988 0.242 6.0 7883.0 49003.0 69.0 0.009 0.92
30 0.0 5.0 5193.0 222236.0 412.0 0.074 0.988 0.026 7.0 449.0 56437.0 68.0 0.132 0.907


收录说明:
1、本网页并非 keras-io/imbalanced_classification 官网网址页面,此页面内容编录于互联网,只作展示之用;2、如果有与 keras-io/imbalanced_classification 相关业务事宜,请访问其网站并获取联系方式;3、本站与 keras-io/imbalanced_classification 无任何关系,对于 keras-io/imbalanced_classification 网站中的信息,请用户谨慎辨识其真伪。4、本站收录 keras-io/imbalanced_classification 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
1、本文来自 AIGC网址导航 投稿的内容 keras-io/imbalanced_classification ,所有言论和图片纯属作者个人意见,版权归原作者所有;不代表 本站 立场;
2、本站所有文章、图片、资源等如果未标明原创,均为收集自互联网公开资源;分享的图片、资源、视频等,出镜模特均为成年女性正常写真内容,版权归原作者所有,仅作为个人学习、研究以及欣赏!如有涉及下载请24小时内删除;
3、如果您发现本站上有侵犯您的权益的作品,请与我们取得联系,我们会及时修改、删除并致以最深的歉意。邮箱: i-hu#(#换@)foxmail.com

2023-12-27

2023-12-27

古风汉服美女图集
扫一扫二维码分享